Achieve Your Signature Style:
Film Former Options from AkzoNobel Personal Care

Maryalice Belluscio, Group Leader Hair Styling
AkzoNobel Surface Chemistry
April 13, 2016
Outline

1. Global styling mega trends

2. AkzoNobel hair styling product portfolio

3. Featured polymers for delivering **volumizing** benefits
 - BIOSTYLE® CGP polymer
 - BIOSTYLE® XH polymer
 - CELQUAT® L-200 polymer

4. Featured polymers for delivering **thermal protection** benefits
 - AMPHOMER® polymer
 - DynamX® H₂O polymer

5. Summary
Global Styling Mega Trends
Hair Styling Trends and Consumer Benefits

Top claims for global hair styling new product development include:

• **Long-Lasting Hold**
 - 24 to 72 hour claims including volume, stiffness, humidity resistance, weather resistance

• **Shiny Hair**
 - Can be associated with moisturising claims (29% of brightening products also hydrate) to make hair look and appear healthier

• **Hair Volume and Thickening**

• **Men’s Styling**
 - In the last year, 15% of all styling launches are geared towards men (the most of any hair category), with favorite formats including gels, creams, putty, waxes

• **Multifunctionality**
 - Styling + additional benefits including conditioning, moisturizing, UV protection, thermal protection, color protection, etc. out of one product

• **Naturally-Derived & Organic Products**
 - 24% of recent styling launches marketed as natural

Source: Mintel GNPD; Hair Styling Products Category Insight, November 2015
Hair Fixative Technology from AkzoNobel Personal Care

<table>
<thead>
<tr>
<th>Vinyl Acetate Copolymers</th>
<th>Sulfonated Polystyrene</th>
</tr>
</thead>
<tbody>
<tr>
<td>• RESYN® 28-2930</td>
<td>• FLEXAN® II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acrylate Copolymers</th>
<th>Cationic Cellulose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• AMPHOMER® family</td>
<td>• CELQUAT® family</td>
</tr>
<tr>
<td>• RESYN XP</td>
<td></td>
</tr>
<tr>
<td>• BALANCE® 47</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acrylate Emulsions</th>
<th>Starch Derived</th>
</tr>
</thead>
<tbody>
<tr>
<td>• BALANCE CR</td>
<td>• AMAZE®</td>
</tr>
<tr>
<td>• BALANCE RCFg</td>
<td>• CELQUAT LS-50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polyurethane/Acrylates</th>
<th>Xanthan Gum Derived</th>
</tr>
</thead>
<tbody>
<tr>
<td>• DynamX®</td>
<td>• AMAZE™ XT</td>
</tr>
<tr>
<td>• DynamX H₂O</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polyurethane/Acrylates</th>
<th>Maltodextrin/VP Hybrids</th>
</tr>
</thead>
<tbody>
<tr>
<td>• DynamX®</td>
<td>• BIOSTYLE® CGP</td>
</tr>
<tr>
<td>• DynamX H₂O</td>
<td>• BIOSTYLE XH</td>
</tr>
</tbody>
</table>
Styling Consumer Benefit: Volumizing

BIOSTYLE® CGP polymer
BIOSTYLE® XH polymer
CELQUAT® L-200 polymer
Suggested Structure of BIOSTYLE® Polymers

INCI: Maltodextrin/VP Copolymer

BIOSTYLE® polymers are based on innovative, nonionic hybrid technology
Features and Benefits of BIOSTYLE® Polymers

INCI: Maltodextrin/VP Copolymer

A new option to satisfy customer and consumer demands for more sustainable products that aid in the hairstyling process

• Based on innovative, nonionic hybrid polymer technology
• Partial natural content offers a more sustainable formulating option
• Two molecular weight polymers are available
 – BIOSTYLE® CGP polymer provides similar performance compared to PVP K-30 or PVP/VA copolymer in working products
 – BIOSTYLE® XH polymer provides similar performance compared to PVP K-90 polymer in working products
• Improved hair volume boosting vs. PVP and PVP/VA copolymers
• Crystal clear solutions and styling products are now achievable with a naturally derived fixative polymer
• Provides exceptional gel clarity and robust Carbomer compatibility
CELQUAT® L-200 Polymer
Suggested Structure

INCI: Polyquaternium-4

Comb-Like Arrangement

Random Placement of Charges
Features and Benefits of CELQUAT® L-200 Polymer

• High performance polymer that offers superior hold with conditioning properties
 − Superior stiffness and high humidity resistance compared to other commonly used polyquaternium polymer benchmarks
 − Excellent combing properties and feel aesthetics in the wet and dry hair states

• Superior volume building properties for fine, thin hair

• CELQUAT polymer technology is derived from cationic cellulose
 − > 50% renewable content
 − Cellulose backbone offers superior aesthetics with a more natural component compared to other commonly used polyquaternium polymer benchmarks
BIOSTYLE® and CELQUAT® Polymers
Volume Evaluation

• Evaluate the on-hair volume building properties of our prototype vs. a commercial volumizing product using the shadow method

• Test is performed using 20 gram, 8.5-inch virgin European ultra fine hair swatches, where nine swatches per sample are evaluated

• Measurements are taken from the same swatch, before applying the styling product and then after product application

• Volume is characterized by the increase in swatch width
The hair width change is measured versus an untreated control with no product.

Both BIOSTYLE® polymer versions build more than twice the volume compared to PVP/VA and PVP K-90 polymers.
A Visible Difference in Volume Build
BIOSTYLE® XH Polymer

Blind salon evaluation comparing 2% BIOSTYLE XH mousse vs. blank mousse (no polymer)

BIOSTYLE XH | Blank Control

Blank Control | BIOSTYLE XH

BIOSTYLE® XH polymer generates significant volume build, particularly for consumers with fine hair
Volume Enhancement
CELQUAT® L-200 Mousse System

The hair width change is measured versus an untreated control with no product.

CELQUAT® L-200 polymer builds significant volume improvement compared to synthetic PQ-11 and PQ-16 polymers.

Basic Mousse
2% active polymer; 6% VOC systems

Conditions: 72°F (22°C); 50% RH

in-cosmetics 2016
A Visible Difference in Volume Build
CELOQUAT® L-200 Polymer

Blank Control | CELQUAT L-200

CELQUAT L-200 | Blank Control

CELOQUAT® L-200 polymer generates significant volume build, particularly for consumers with fine hair.

Blind salon evaluation comparing 2% CELQUAT L-200 mousse vs. blank mousse (no polymer)
Volumizing Summary

• The BIOSTYLE® polymers provide superior volume build and texture to hair compared to the PVP and PVP/VA copolymer benchmarks.

• CELQUAT® L-200 polymer builds more than double the volume when compared to Polyquaternium-11 and Polyquaternium-16 market benchmarks.

• These AkzoNobel styling polymers are derived from partial renewable resources to aid in volume building and improved on-hair aesthetics:
 – BIOSTYLE polymers derived from maltodextrin
 – CELQUAT polymers derived from cellulose
Styling Consumer Benefit: Thermal Protection

AMPHOMER® polymer

DynamX® \(\text{H}_2\text{O} \) polymer
AMPROMER® Polymer
Suggested Structure

INCI:
Octylacrylamide/Acrylates/Butylaminoethyl Methacrylate Copolymer

\[
\begin{align*}
R_1 &= \text{alkyl} \\
R_2 &= (\text{hydroxy})\text{alkyl}
\end{align*}
\]
DynamX® H₂O Polymer Suggested Structure

INCI: Polyurethane-14 (and) AMP-Acrylates Copolymer

- Flexibility, Removability
- Memory
- Removability

- End Capper
 - IPDI
 - PPG
 - IPDI
 - Rigid Diol
 - IPDI
 - DMPA
- Acid
 - (Meth)acrylates

Flexibility
Stiffness, High Humidity Curl Resistance
Features and Benefits of AMPHOMER® and DynamX® Polymers

AMPHOMER® Polymer
INCI: Octylacrylamide/Acrylates/Butylaminoethyl Methacrylate Copolymer
- Amphoteric
- Superior film forming properties
- Market-leading stiffness
- 72 hour high humidity resistance
- Thermal protection*
- Weather resistant

*AMPHOMER polymer technology covered under US Patent 9,119,972 B2

*Recommended use level: 1-6%

DynamX® H₂O Polymer
INCI: Polyurethane-14 (and) AMP-Acrylates Copolymer
- Anionic polymer, pre-neutralized with AMP
- Supplied as a 25% active aqueous solution for maximum formulation versatility
- The polyurethane portion provides low tack, memory, durability, and flexibility
- The acrylate portion offers strength, humidity resistance and some rigidity
- Overall gives flexible styling, curl definition, anti-frizz properties, thermal protection, and high shine

Recommended use level: 1-6% active
Thermal Protection Testing and Analysis

- Heating process involved 10 cycles of:
 - Applying appropriate polymer spray to dry hair swatch
 - Applying heat via flat iron at highest setting (450°F / 232°C) for 1 minute
 - Washing swatch with 1.5cc of Prell shampoo
 - Drying swatch in 45°C oven for 15 min

- Control sample was run similarly without polymer applied

- Each sample was evaluated for wetting force using dynamic surface tension analysis
SEM Analysis

• Scanning Electron Microscopy

• Performed to understand physical differences between damaged and undamaged hair and the polymer protection impact

• Images are of a single fiber taken from a hair tress tested for each polymer

• Images are shown at 10,000 magnification

• SEM analysis was performed via a blind study at an AkzoNobel Surface Chemistry research facility in Brewster, NY
Scanning Electron Microscopy Analysis
Polymer Solutions

Untreated

Heat Treated (no film former)

AMPROMER® polymer after heat treatment

DynamX® H₂O polymer after heat treatment

Conditions: 1% active aqueous solutions, neutralized 100% with AMP; 12 heat cycles at 450°F / 232°C
Thermal Protection
Wetting Force Analysis

- Single hair fibers were dipped in water to determine the wetting force of the fiber.
- Data was recorded starting the instance the hair breaks the surface of the water until the point where the hair fiber was submerged 3 mm.
- Data is reported in mN (millinewtons), representing wetting force, and corresponds to the depth at which the hair is submerged.
- An average of 300-450 measurements were taken for each hair fiber.
- To ensure statistical accuracy, 12 hair fibers for each sample were evaluated.
- The larger the wetting force, the more damaged the hair fiber.
- Damaged hair is more hydrophilic.

Kruss Tensiometer
Thermal Protection Wetting Force Analysis

Aqueous Solutions:
1% active polymer, 100% neutralized with AMP

- Virgin Hair
- AMPHOMER® polymer
- DynamX® H2O polymer
- Heat Treated Control

- The larger the wetting force, the more damaged the hair fiber
- Acrylate polymers provide the most protection from thermal damage, followed by urethane material
- Among the products tested, AMPHOMER® polymer delivers the best protection
Thermal Protection Summary

• AMPHOMER® polymer offers superior thermal protection properties against the damaging effects of blow dryers, hot flat irons and styling implements
 – Technology is patent protected in the US

• DynamX® H₂O polymer also provides thermal protection properties for a softer, more natural look and feel

• Both products offer 450°F / 232°C heat protection claims
Achieve Your Signature Style

Summary

AkzoNobel Personal Care offers a wide range of synthetic and naturally-derived ingredients that provide consumer perceivable styling benefits, including:

- Hair Conditioning
- **Volume Boosting**
- Curl Definition
- Humidity Defense
- **Thermal Protection**

How can AkzoNobel support you?
Thank You!
Visit Us at Stand F50

Achieve Your Signature Style

Learn more at akzonobel.com/personalcare