Kraton® polymers for rheology modification of oils

Mark Kalisvaart
in-cosmetics 2015, Barcelona
Outline

- Introduction to Kraton® polymers
- Introduction to Kraton modified oils
- How to incorporate Kraton polymers into oil?
- Benchmark study
- Conclusions
What are Kraton® polymers?

Styrenic Block Copolymer (SBC)* is a Thermoplastic Elastomer (TPE) enabling viscosity modification of oils

*Certain SBC’s are INCI and IECIC-2014 listed and not considered as nanomaterials nor classified according to CLP Regulation N°272/2008

Residual styrene in Kraton polymers is below 1ppm.
Introduction to Kraton® modified oils

Polymer structuring in paraffinic oil*

- **Tri-block** (eg. Kraton® G1652)
 - Three dimensional solid gel
 - Micelles providing shear thinning

- **Di-block** (eg. Kraton G1701)
 - In oil

- **Star-shape** (eg. Kraton® MD6953)
 - Thickening

* Other types of oil may lead to different rheologies
How to incorporate Kraton® polymers into oil?

1. Addition of Kraton® polymer to warm oil
2. Mixing under high or low shear
3. Gel formation upon cooling down
Benchmark study
Various thickeners in non-polar to polar emollients

Objective

- Determine the compatibility of various solid thickeners in non-polar to polar emollients

Measurables

- Handling
- Visual aspects
- Type of rheology
Benchmark study

Emollients

<table>
<thead>
<tr>
<th>INCI name</th>
<th>Origin</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caprylic/Capric Triglyceride</td>
<td>Vegetable</td>
<td>High</td>
</tr>
<tr>
<td>Canola Oil</td>
<td>Vegetable</td>
<td>High</td>
</tr>
<tr>
<td>Helianthus Annuus (Sunflower) Hybrid Oil</td>
<td>Vegetable</td>
<td>High</td>
</tr>
<tr>
<td>Butyrospermum Parkii Butter</td>
<td>Vegetable</td>
<td>High</td>
</tr>
<tr>
<td>Shea Butter Ethyl Esters</td>
<td>Vegetable</td>
<td>High</td>
</tr>
<tr>
<td>Limanthes Alba (Meadowfoam) Seed Oil</td>
<td>Vegetable</td>
<td>High</td>
</tr>
<tr>
<td>Neopentyl Glycol Diethylhexanoate</td>
<td>Vegetable/Synthetic</td>
<td>High</td>
</tr>
<tr>
<td>Olea Europaea (Olive) Fruit Oil</td>
<td>Vegetable</td>
<td>High</td>
</tr>
<tr>
<td>Dicaprylyl Ether</td>
<td>Synthetic</td>
<td>Low</td>
</tr>
<tr>
<td>Squalane</td>
<td>Vegetable</td>
<td>No</td>
</tr>
</tbody>
</table>
Benchmark study

Thickeners

<table>
<thead>
<tr>
<th>INCI name</th>
<th>Product form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stearalkonium Hectorite</td>
<td>Brownish powder</td>
</tr>
<tr>
<td>Disteardimonium Hectorite</td>
<td>Brownish powder</td>
</tr>
<tr>
<td>Silica</td>
<td>White powder</td>
</tr>
<tr>
<td>Silica dimethicone silylate</td>
<td>White powder</td>
</tr>
<tr>
<td>Polyamide-8</td>
<td>Transparent pellet</td>
</tr>
<tr>
<td>Hydrogenated styrene/isoprene copolymer</td>
<td>White Crumb</td>
</tr>
<tr>
<td>Hydrogenated styrene/butadiene copolymer</td>
<td>White Crumb</td>
</tr>
</tbody>
</table>
Benchmark study
Handling/Processing

Hectorites
- Require polar additives to activate which complicates processing
- Incorporation at room temperature

Silicas
- Very low bulk density, potential safety issue
- Incorporation at room temperature

Polyamide-8
- Easy handling
- Incorporation at 85-95°C

Kraton® Styrenic Block Copolymers
- Easy handling
- Incorporation at 70-120°C
Benchmark study

Visual aspects in oil

<table>
<thead>
<tr>
<th>Hectorites</th>
<th>Silica’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Brownish, hazy appearance in both non-polar and polar emollients</td>
<td></td>
</tr>
<tr>
<td>- Phase separation in polar emollient after 24 hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Crystal clear to hazy depending on type of emollient</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polyamide-8</th>
<th>Kraton® Styrenic Block Copolymers</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Hazy in most emollient types</td>
<td></td>
</tr>
<tr>
<td>- Phase separation in polar and non-polar emollient after 1 week</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Crystal clear to slight haze depending on type of emollient</td>
</tr>
</tbody>
</table>
Benchmark study
Rheology

Hectorites
- Thickening and Shear thinning

Silica’s
- Thickening and Shear thinning

Polyamide-8
- Thickening and Shear thinning

Kraton® Styrenic Block Copolymers
- Thickening and shear thinning or solid gel depending on polymer and emollient type
Benchmark study

Conclusions

Kraton® polymers provide

- Easy incorporation in a wide range of emollients
- Crystal clear to slightly hazy appearance
- Various rheology profiles
Why choosing Kraton® polymers?

Value Proposition

Appearance and feel
- crystal clear natural oil formulations
- high gloss
- silky, smooth texture on skin

Stability improvement
- stabilisation of water in oil (W/O) emulsions
- homogeneous dispersion of particles such as glitters, pigments

Rheology modification
- compatibility with a large range of oils
- viscosity boost of oil phase

Film formation
- easy and uniform spreading
- moisturizing effect
- water resistant: formation of protective layer, resistant to rinse-off
LEGAL DISCLAIMER

Kraton Performance Polymers, Inc. believes the information set forth herein to be true and accurate, but any recommendations, presentations, statements or suggestions that may be made are without any warranty or guarantee whatsoever, and shall establish no legal duty on the part of any Kraton Polymers affiliated entity. The legal responsibilities of any Kraton Polymers affiliate with respect to the products described herein are limited to those set forth in Kraton’s conditions of sale or any effective sales contract. Kraton does not warrant that the products described herein are suitable for any particular uses, including, without limitation, cosmetics and/or medical uses. Persons using the products must rely on their own independent technical and legal judgment, and must conduct their own studies, registrations, and other related activities, to establish the safety and efficacy of their end products incorporating any Kraton products for any application. Nothing set forth herein shall be construed as a recommendation to use any Kraton product in any specific application or in conflict with any existing patent rights. Kraton reserves the right to withdraw any product from commercial availability and to make any changes to any existing commercial or developmental polymer. Kraton expressly disclaims, on behalf of all Kraton affiliates, any and all liability for any damages or injuries arising out of any activities relating to the use of any information set forth in this publication, or the use of any Kraton products.

This publication includes "forward-looking statements," which are statements other than statements of historical fact and are often characterized by the use of words such as "believes," "expects," "estimates," "projects," "may," "will," "intends," "plans" or "anticipates," or by discussions of strategy, plans or intentions. All forward-looking statements in this publication are made based on management’s current expectations and estimates, which involve risks, uncertainties and other factors that could cause results to differ materially from those expressed in forward-looking statements. These risks and uncertainties are more fully described in "Part I. Item 1A. Risk Factors" contained in our Annual Report on 10-K, as filed with the Securities and Exchange Commission and as subsequently updated in our Quarterly Reports on Form 10-Q. We hereby make reference to all such filings for all purposes. Readers are cautioned not to place undue reliance on forward-looking statements. We assume no obligation to update such information.

Kraton maintains a Cosmetics, Drugs and Medical Device Policy that restricts the use of Kraton’s Products in certain end use applications without Kraton’s prior written consent. Accordingly, Kraton does not guarantee that Kraton’s products will be available for use in all potential end use applications. Kraton’s Cosmetics, Drugs and Medical Device Policy is available on Kraton’s website at www.kraton.com.

Kraton, the Kraton logo and design, the Cariflex logo, Cariflex, Nexar and the Giving Innovators Their Edge tagline and, in some cases, their expression in other languages, are trademarks of Kraton Performance Polymers, Inc. and are registered in many countries throughout the world.

©2015 Kraton Performance Polymers, Inc. All rights reserved.
Disteardimonium Hectorite in non-polar emollient
Silica in polar emollient
Polyamide-8 in non-polar emollient
Polyamide-8 in low polar emollient
Polyamide-8 in polar emollient
Kraton in various emollients

- Polar emollient
 - Kraton in polar emollient
- Non-polar emollient
 - Kraton in non-polar emollient
- Low-polar emollient
 - Kraton in low-polar emollient
Representative Rheology profile of Hectorite in oil
Representative Rheology profile of silica in oil

8% wt Silica dimethicone silylate in squalane

Squalane
Representative Rheology profile of PA-8 in oil

8% wt Polyamide-8 in squalane

Squalane
Representative Rheology profiles of Kraton in oil

![Graph showing rheology profiles](image)

- 8% wt Kraton® MD6953 in squalane
- 8% wt Kraton® G1701 in squalane

Viscosity at 25°C, mPa.s vs. Shear rate, s⁻¹